Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.137
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735991

RESUMO

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Assuntos
Autoanticorpos , Neurônios Dopaminérgicos , Doença de Parkinson , Receptor Tipo 1 de Angiotensina , Animais , Autoanticorpos/imunologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/imunologia , Ratos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Modelos Animais de Doenças , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Masculino , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Oxidopamina/farmacologia , Humanos , Ratos Sprague-Dawley
2.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653362

RESUMO

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Assuntos
Via de Sinalização Hippo , Nefropatias , Rim , Síndrome Metabólica , Telmisartan , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Masculino , Ratos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Ratos Wistar , Metaloproteinase 9 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Malondialdeído/metabolismo , Interleucina-6/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
3.
Eur J Med Chem ; 271: 116452, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38685142

RESUMO

Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Sondas Moleculares , Imagem Óptica , Receptor Tipo 1 de Angiotensina , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Sondas Moleculares/química , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética , Receptor Tipo 1 de Angiotensina/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Distribuição Tecidual , Camundongos Nus
4.
Hypertens Res ; 47(4): 987-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351189

RESUMO

In men, the lower urinary tract comprises the urinary bladder, urethra, and prostate, and its primary functions include urine storage and voiding. Hypertension is a condition that causes multi-organ damage and an age-dependent condition. Hypertension and the renin-angiotensin system activation are associated with the development of lower urinary tract dysfunction. Hypertensive animal models show bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. In the renin-angiotensin system, angiotensin II and the angiotensin II type 1 receptor, which are expressed in the lower urinary tract, have been implicated in the pathogenesis of lower urinary tract dysfunction. Moreover, among the several antihypertensives, renin-angiotensin system inhibitors have proven effective in human and animal models of lower urinary tract dysfunction. This review aimed to elucidate the hitherto known mechanisms underlying the development of lower urinary tract dysfunction in relation to hypertension and the angiotensin II/angiotensin II type 1 receptor axis and the effect of renin-angiotensin system inhibitors on lower urinary tract dysfunction. Possible mechanisms through which hypertension or activation of Ang II/AT1 receptor axis causes LUTD such as bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. LUT: lower urinary tract, LUTD: lower urinary tract dysfunction, AT1: angiotensin II type 1, ACE: angiotensin-converting enzyme.


Assuntos
Hipertensão , Hiperplasia Prostática , Masculino , Animais , Humanos , Bexiga Urinária/metabolismo , Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Anti-Hipertensivos/farmacologia , Inibidores Enzimáticos/farmacologia
5.
Physiol Res ; 72(5): 597-606, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015759

RESUMO

The development of preeclampsia (PE) is associated with the impaired trophoblast motility. MicroRNAs (miRs) contribute to the modulation of trophoblast invasion. In the current study, the role of miR-206/AGTR1 in the TNF-alpha-induced invasion defect of trophoblasts was explored. The levels of miR-206 and ATGR1 in clinical placenta tissues were investigated. Trophoblasts were treated with TNF-alpha, and the levels of miR-206 and ATGR1 were modulated. Changes in cell viability, invasion, and inflammation in trophoblasts were detected. The level of miR-206 was induced, while the level of AGTR1 was suppressed in placenta tissues. In in vitro assays, TNF-alpha suppressed viability, induced inflammatory response, inhibited invasion, upregulated miR-206, and down-regulated AGTR1. The inhibited expression of miR-206 or the overexpression of AGTR1 counteracted the effects of TNF-alpha, indicating the key role of the miR-206/AGTR1 in progression of PE. Collectively, miR-206 suppressed viability, induced inflammatory response, and decreased invasion of trophoblasts by inhibiting AGTR1.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Trofoblastos/metabolismo , Movimento Celular , Proliferação de Células , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
6.
Biochem Pharmacol ; 217: 115837, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777161

RESUMO

The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.


Assuntos
Doenças Cardiovasculares , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Receptores ErbB/metabolismo , Inflamação , Receptor Tipo 1 de Angiotensina/metabolismo , Tirosina
7.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511174

RESUMO

In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.


Assuntos
Angiotensina II , Hipertensão , Rim , Receptor Tipo 1 de Angiotensina , Receptores Purinérgicos P2X , Humanos , Trifosfato de Adenosina/metabolismo , Angiotensina II/metabolismo , Arteríolas/metabolismo , Hipertensão/metabolismo , Rim/irrigação sanguínea , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Receptores Purinérgicos P2X/metabolismo
8.
Adv Exp Med Biol ; 1427: 175-184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322348

RESUMO

Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/µm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 µm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Ratos , Animais , Microscopia , Células PC12 , Receptor Tipo 1 de Angiotensina/metabolismo , Hipóxia , Angiotensina II/metabolismo , Angiotensina II/farmacologia
9.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108124

RESUMO

Transplant-associated thrombotic microangiopathy (TMA) occurs in a significant percentage of patients after allogeneic stem cell transplantation (allo-SCT) and is associated with significant morbidity and mortality. The aim of the present study was to examine the association of serum angiopoetin-2 (Ang2) levels and the presence of antibodies against angiotensin II type 1 (AT1R) and ndothelin A Recreptor (ETAR) with the outcome of patients with TMA and/or graft-versus-host disease (GVHD) after allo-SCT. Analysis of our data showed that elevated serum Ang2 levels at the time of TMA diagnosis are significantly associated with increased non-relapse mortality and decreased overall survival. To our knowledge, this is the first study demonstrating an association between raised Ang2 levels and poor outcomes in patients with TMA. Antibodies against AT1R (AT1R-Abs) and ETAR (ETAR-Abs) were detected in 27% and 23% of the patients, respectively, but there was no association between the presence of autoantibodies and the outcome of patients with TMA. However, a significant finding was the strong positive correlation between the presence of AT1R-Abs with the occurrence of chronic fibrotic GVHD, such as scleroderma and cryptogenic organizing pneumonia, raising the possibility of the contribution of autoantibodies in the pathogenesis of fibrotic GVHD manifestations.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Hormônios Peptídicos , Humanos , Receptor de Endotelina A/metabolismo , Angiotensina II , Autoanticorpos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/patologia , Receptor Tipo 1 de Angiotensina/metabolismo
10.
Eur J Pharmacol ; 946: 175650, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907262

RESUMO

Enteric glial cells (EGCs) play an important role in visceral hypersensitivity associated with irritable bowel syndrome (IBS). Losartan (Los) is known to reduce pain; however, its function in IBS is unclear. The present study aimed to investigate Los's therapeutic effect on visceral hypersensitivity in IBS rats. Thirty rats were randomly divided into control, acetic acid enema (AA), AA + Los low, medium and high dose groups in vivo. EGCs were treated with lipopolysaccharide (LPS) and Los in vitro. The molecular mechanisms were explored by assessing the expression of EGC activation markers, pain mediators, inflammatory factors and angiotensin-converting enzyme 1(ACE1)/angiotensin II (Ang II)/Ang II type 1 (AT1) receptor axis molecules in colon tissue and EGCs. The results showed that the rats in the AA group showed significantly higher visceral hypersensitivity than the control rats, which was alleviated by different doses of Los. The expression of GFAP, S100ß, substance P (SP), calcitonin gene-related peptide (CGRP), transient receptor potential vanilloid 1 (TRPV1), tumor necrosis factor (TNF), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) was considerably increased in colonic tissues of AA group rats and LPS-treated EGCs compared with control rats and EGCs, and reduced by Los. In addition, Los reversed ACE1/Ang II/AT1 receptor axis upregulation in AA colon tissues and LPS-treated EGCs. These results show that Los inhibits ACE1/Ang II/AT1 receptor axis upregulation by suppressing EGC activation, resulting in reduced expression of pain mediators and inflammatory factors, thereby alleviating visceral hypersensitivity.


Assuntos
Síndrome do Intestino Irritável , Losartan , Animais , Ratos , Ácido Acético/toxicidade , Enema , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Losartan/farmacologia , Losartan/uso terapêutico , Neuroglia , Dor/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Peptidil Dipeptidase A/metabolismo
11.
Am J Reprod Immunol ; 89(4): e13693, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794639

RESUMO

PROBLEM: Preeclampsia (PE), new-onset hypertension during pregnancy, is associated with a pro-inflammatory state with activated T cells, cytolytic natural killer (NK) cells, dysregulated complement proteins, and B cells secreting agonistic autoantibodies to the angiotensin II type-1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these features of PE. Blocking CD40L-CD40 communication between T and B cells or B cell depletion with Rituximab prevents hypertension and AT1-AA production in RUPP rats. This suggests that T cell-dependent B cell activation contributes to the hypertension and AT1-AA associated with PE. B2 cells maturing into antibody producing plasma cells are the product of T cell-dependent B cell-interactions and B cell Activating Factor (BAFF) is an integral cytokine in the development of B2 cells specifically. Thus, we hypothesize that BAFF blockade will selectively deplete B2 cells, therefore reducing blood pressure, AT1-AA, activated NK Cells, and complement in the RUPP rat model of PE. METHOD OF STUDY: Gestational Day (GD) 14 pregnant rats underwent the RUPP procedure, and a subset were treated with 1 mg/kg Anti-BAFF antibodies via jugular catheters. On GD19, blood pressure was measured, B cells and NK cells were measured by flow cytometry, AT1-AA was measured by cardiomyocyte bioassay, and complement activation was measured by ELISA. RESULTS: Anti-BAFF therapy attenuated hypertension, AT1-AA, NK cell activation, and APRIL levels in RUPP rats without negatively impacting fetal outcomes. CONCLUSIONS: This study demonstrates that B2 cells contribute to hypertension, AT1-AA, and NK cell activation in response to placental ischemia during pregnancy.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta/metabolismo , Fator Ativador de Células B , Ratos Sprague-Dawley , Pressão Sanguínea/fisiologia , Interleucina-4 , Isquemia , Receptor Tipo 1 de Angiotensina/metabolismo
12.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768653

RESUMO

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , beta-Arrestina 2/metabolismo , Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais
13.
Pharmacol Res Perspect ; 11(1): e01053, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639940

RESUMO

Angiotensin II analogue and ß-arrestin biased agonist TRV027 (Sarcosine1 , d-Alanine8 -Angiotensin (Ang) II; SD Ang II), developed by Trevena, Inc. in the early 2010s, brought hopes of a novel treatment for cardiovascular diseases, due to its ability to simultaneously cause signaling through the ß-arrestin signaling pathway, while antagonizing the pathophysiological effects of Ang II mediated by the AT1 receptor G protein signaling cascades. However, a phase II clinical trial of this agent revealed no significant benefit compared to placebo treatment. Using 125 I-Sarcosine1 , Isoleucine8 -Ang II (125 I-SI Ang II) radioligand receptor competition binding assays, we assessed the relative affinity of TRV027 compared to SI Ang II for liver AT1 receptors. We also compared radioiodinated TRV027 (125 I-SD Ang II) binding affinity for liver AT1 receptors with 125 I-SI Ang II. We found that despite its anticipated gain in metabolic stability, TRV027 and 125 I-SD Ang II had reduced affinity for the AT1 receptor compared with SI Ang II and 125 I-SI Ang II. Additionally, male-female comparisons showed that females have a higher AT1 receptor density, potentially attributed to tissue-dependent estrogen and progesterone effects. Peptide drugs have become more popular over the years due to their increased bioavailability, fast onset of action, high specificity, and low toxicity. Even though Trevena®'s biased agonist peptide TRV027 offered greater stability and potency compared to earlier AT1 R biased agonists, it failed its phase II clinical trial in 2016. Further refinements to AT1 R biased agonist peptides to improve affinity, as seen with SI Ang II, with better stability and bioavailability, has the potential to achieve the anticipated biased agonism.


Assuntos
Angiotensina II , Fígado , Receptor Tipo 1 de Angiotensina , Sarcosina , Animais , Feminino , Masculino , Ratos , Alanina/metabolismo , Angiotensina II/farmacologia , beta-Arrestinas/metabolismo , Isoleucina/metabolismo , Fígado/metabolismo , Sarcosina/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
14.
Toxicol Appl Pharmacol ; 461: 116383, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682589

RESUMO

A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.


Assuntos
Losartan , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Losartan/farmacologia , Angiotensina II/toxicidade , Receptor Tipo 1 de Angiotensina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Prolactina/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo
15.
Toxicology ; 486: 153442, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706861

RESUMO

Previous studies suggest some link between formaldehyde exposure and harmful cardiovascular effects. But whether exposure to formaldehyde can cause blood pressure to rise, and if so, what the underlying mechanism is, remains unclear. In this study, C57BL/6 male mice were exposed to 0.1, 0.5, 2.5 mg/m3 of gaseous formaldehyde for 4 h daily over a three-week period. The systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and heart rate (HR) of the mice were measured by tail-cuff plethysmography, and any histopathological changes in the target organs of hypertension were investigated. The results showed that exposure to formaldehyde did cause a significant increase in blood pressure and heart rate, and resulted in varying degrees of damage to the heart, aortic vessels and kidneys. To explore the underlying mechanism, a specific inhibitor of angiotensin converting enzyme (ACE) was used to block the ACE/AT1R axis. We observed the levels of ACE and angiotensin II type 1 receptor (AT1R), as well as the bradykinin (BK) in cardiac cytoplasm. The data suggest that exposure to formaldehyde induced an increase in the expression of ACE and AT1R, and decreased the levels of BK. Strikingly, treatment with 5 mg/kg/d ACE inhibitor can attenuate the increase in blood pressure and the pathological changes caused by formaldehyde exposure. This result has improved our understanding of whether, and how, formaldehyde exposure affects the development of hypertension.


Assuntos
Hipertensão , Peptidil Dipeptidase A , Animais , Masculino , Camundongos , Pressão Sanguínea , Bradicinina/metabolismo , Formaldeído/toxicidade , Hipertensão/induzido quimicamente , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
16.
Cells ; 11(21)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359814

RESUMO

Low back pain is a clinically highly relevant musculoskeletal burden and is associated with inflammatory as well as degenerative processes of the intervertebral disc. However, the pathophysiology and cellular pathways contributing to this devastating condition are still poorly understood. Based on previous evidence, we hypothesize that tissue renin-angiotensin system (tRAS) components, including the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), are present in human nucleus pulposus (NP) cells and associated with inflammatory and degenerative processes. Experiments were performed with NP cells from four human donors. The existence of angiotensin II, angiotensin II type 1 receptor (AGTR1), AGTR2, MAS-receptor (MasR), and ACE2 in human NP cells was validated with immunofluorescent staining and gene expression analysis. Hereafter, the cell viability was assessed after adding agonists and antagonists of the target receptors as well as angiotensin II in different concentrations for up to 48 h of exposure. A TNF-α-induced inflammatory in vitro model was employed to assess the impact of angiotensin II addition and the stimulation or inhibition of the tRAS receptors on inflammation, tissue remodeling, expression of tRAS markers, and the release of nitric oxide (NO) into the medium. Furthermore, protein levels of IL-6, IL-8, IL-10, and intracellular as well as secreted angiotensin II were assessed after exposing the cells to the substances, and inducible nitric oxide synthase (iNOS) levels were evaluated by utilizing Western blot. The existence of tRAS receptors and angiotensin II were validated in human NP cells. The addition of angiotensin II only showed a mild impact on gene expression markers. However, there was a significant increase in NO secreted by the cells. The gene expression ratios of pro-inflammatory/anti-inflammatory cytokines IL-6/IL-10, IL-8/IL-10, and TNF-α/IL-10 were positively correlated with the AGTR1/AGTR2 and AGTR1/MAS1 ratios, respectively. The stimulation of the AGTR2 MAS-receptor and the inhibition of the AGTR1 receptor revealed beneficial effects on the gene expression of inflammatory and tissue remodeling markers. This finding was also present at the protein level. The current data showed that tRAS components are expressed in human NP cells and are associated with inflammatory and degenerative processes. Further characterization of the associated pathways is warranted. The findings indicate that tRAS modulation might be a novel therapeutic approach to intervertebral disc disease.


Assuntos
Núcleo Pulposo , Sistema Renina-Angiotensina , Humanos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361958

RESUMO

Myocardial fibrosis following acute myocardial infarction (AMI) seriously affects the prognosis and survival rate of patients. This study explores the role and regulation mechanism of storax, a commonly used traditional Chinese medicine for treatment of cardiovascular diseases, on myocardial fibrosis and cardiac function. The AMI rat model was established by subcutaneous injection of Isoproterenol hydrochloride (ISO). Storax (0.1, 0.2, 0.4 g/kg) was administered by gavage once/d for 7 days. Electrocardiogram, echocardiography, hemodynamic and cardiac enzyme in AMI rats were measured. HE, Masson, immunofluorescence and TUNEL staining were used to observe the degree of pathological damage, fibrosis and cardiomyocyte apoptosis in myocardial tissue, respectively. Expression of AT1R, CARP and their downstream related apoptotic proteins were detected by WB. The results demonstrated that storax could significantly improve cardiac electrophysiology and function, decrease serum cardiac enzyme activity, reduce type I and III collagen contents to improve fibrosis and alleviate myocardial pathological damage and cardiomyocyte apoptosis. It also found that storax can significantly down-regulate expression of AT1R, Ankrd1, P53, P-p53 (ser 15), Bax and cleaved Caspase-3 and up-regulate expression of Mdm2 and Bcl-2. Taken together, these findings indicated that storax effectively protected cardiomyocytes against myocardial fibrosis and cardiac dysfunction by inhibiting the AT1R-Ankrd1-P53 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Animais , Ratos , Apoptose , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
18.
Pharmacol Res ; 185: 106473, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182039

RESUMO

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.


Assuntos
Cardiomiopatias , Sepse , Camundongos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , NF-kappa B/metabolismo , Antagonistas de Receptores de Angiotensina , Receptor 4 Toll-Like , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno , Inibidores da Enzima Conversora de Angiotensina , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Macrófagos/metabolismo
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 819-824, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36082713

RESUMO

Objective To investigate the effects of microRNA-152 (miR-152) targeting at angiotensin II type 1 receptor (AGTR1) on the epithelial mesenchymal transition (EMT) and renin-angiotensin system (RAS) of HCCLM3 human hepatocellular carcinoma cells. Methods The cultured HCCLM3 cells were divided into untransfected group (untreated), negative control group (transfection negative control sequence) and miR-152 group (transfected miR-152 mimic). The expressions of miR-152, angiotensin converting enzyme (ACE), angiotensin II (AngII) and angiotensin II type 1 receptor (AGTR1) mRNAs were detected by real-time fluorescence quantitative PCR. Cell invasion and migration were detected by TranswellTM assay. The expression of vimentin, N-cadherin, E-cadherin and AGTR1 were tested by western blot. The targeting relationship between miR-152 and AGTR1 were examined by double luciferase reporter assay. Results Compared with the untransfected group or the negative control group, the expression levels of miR-152 and E-cadherin protein in the miR-152 group significantly increased, while the expression levels of ACE, AngII, AGTR1 mRNA, the number of invaded cells, the number of migrating cells, and the protein expression levels of vimentin, N-cadherin, and AGTR1 decreased significantly. The results of double luciferase reporter gene assay confirmed that miR-152 can target binding with AGTR1. Conclusion miR-152 may inhibit EMT and RAS of HCCLM3 cells by targeting down-regulation of AGTR1 expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Caderinas/genética , Caderinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Mensageiro/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/genética , Vimentina/genética , Vimentina/metabolismo
20.
Am J Physiol Renal Physiol ; 323(5): F507-F514, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074917

RESUMO

(Pro)renin receptor (PRR), also termed ATPase H+-transporting accessory protein 2 (ATP6AP2), is a type I transmembrane receptor and is capable of binding and activating prorenin and renin. Apart from its association with the renin-angiotensin system, PRR has been implicated in diverse developmental, physiological, and pathophysiological processes. Within the kidney, PRR is predominantly expressed in the distal nephron, particularly the intercalated cells, and activation of renal PRR contributes to renal injury in various rodent models of chronic kidney disease. Moreover, recent evidence demonstrates that PRR is primarily cleaved by site-1 protease to produce 28-kDa soluble PRR (sPRR). sPRR seems to mediate most of the known pathophysiological functions of renal PRR through modulating the activity of the intrarenal renin-angiotensin system and provoking proinflammatory and profibrotic responses. Not only does sPRR activate renin, but it also directly binds and activates the angiotensin II type 1 receptor. This review summarizes recent advances in understanding the roles and mechanisms of sPRR in the context of renal pathophysiology.


Assuntos
Insuficiência Renal Crônica , ATPases Vacuolares Próton-Translocadoras , Humanos , Renina/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Biomarcadores/metabolismo , Adenosina Trifosfatases , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA